
Toward computer vision systems that understand real-world assembly processes

Jonathan D. Jones Gregory D. Hager Sanjeev Khudanpur
Johns Hopkins University

jdjones@jhu.edu, hager@cs.jhu.edu, khudanpur@jhu.edu

Abstract

Many applications of computer vision require robust sys-
tems that can parse complex structures as they evolve in
time. Using a block construction task as a case study, we
illustrate the main components involved in building such
systems. We evaluate performance at three increasingly-
detailed levels of spatial granularity on two multimodal
(RGBD + IMU) datasets. On the first, designed to match
the assumptions of the model, we report better than 90%
accuracy at the finest level of granularity. On the second,
designed to test the robustness of our model under adverse,
real-world conditions, we report 67% accuracy and 91%
precision at the mid-level of granularity. We show that this
seemingly simple process presents many opportunities to
expand the frontiers of computer vision and action recog-
nition.

1. Introduction
Many applications of computer vision require systems

to be deployed in relatively uncontrolled environments that
evolve in time. As an example, consider the perception sys-
tem guiding a collaborative robot working on a manufactur-
ing task with a human partner. As parts are being assem-
bled, this system must do more than recognize the actions
its partner has taken—it must also understand and reason
about the way these actions will change the part.

In assembly tasks such as the one just described, the
manufactured part is a complex, dynamic object. The agents
assemble this part by combining smaller entities (or sub-
parts) in specific ways. For example: as part of assembling
a table, one must select the correct leg, orient it properly
with respect to the top, and then insert an appropriate screw
to fasten the two together.

Understanding these processes is a challenging problem
for computer vision, and can be better understood by exam-
ining inferences at three levels of precision. At the coarsest
level, a system must identify which entities have been in-
tegrated into the assembly. Furthermore, it must identify
which of the entities in the assembly are connected to each

Figure 1: Partial example of an assembly process. The
agent alters the state by adding or removing blocks in spe-
cific ways.

other. Finally, it must identify the precise manner of each
connection.

Much of the recent progress in activity recognition has
focused on improving performance on a variety of bench-
mark datasets whose labels consist of coarse-grained video
descriptions (e.g., recognizing that an activity is furniture
building instead of weightlifting) [16, 19, 2, 13, 6]. Since
these methods focus on inferring from a relatively small,
closed set of high-level labels, they are not well-suited to
capturing the fine-grained details that are important in an as-
sembly process. In addition, data acquisition in real-world
environments is never as carefully controlled as the pro-
cesses by which benchmark datasets are constructed. It is
common for the entities or actions of interest to be partially,
or even completely, occluded consistently throughout a pro-
cedure. The fine-grained complexity, combinatorial nature,
and unpredictable observations in this task require different
approaches from the current paradigm of computer vision
research.

In this paper, we describe a method for performing fine-
grained structural parsing of time-series derived from spa-
tial assemblies. As a case study, we apply this method to the
specific task of parsing block structures from video. This
process provides an interesting setting to test methods for

very fine-grain geometric inference, time-series video pars-
ing, and occlusion-robust image parsing.

The remainder of this paper is structured as follows. In
Section 2, we review related work. We define a representa-
tion of spatial assemblies and the actions that modify them
in Section 3. In Section 4 we derive probabilistic mod-
els and inference algorithms for the assembly process. We
present the block building task as an instance of spatial as-
sembly parsing in Section 5. We evaluate our approach em-
pirically and conclude, respectively, in Sections 6 and 7.

2. Related Work
Action recognition from procedural data: Several

tasks from the fine-grained action recognition literature
originate from procedural data—that is, processes in which
an agent is trying to change the state of some entity to
achieve a particular outcome. For instance, people try to
make a salad in[20] or build a toy airplane in [22]. These
procedural datasets have so far been used as testbeds for
segmenting and classifying actions (“peeling a cucumber,”
or “added propeller”). However, a recent paper in the nat-
ural language processing literature learns from procedural
text data, specifically recipes, to predict state changes in-
duced by actions [4]. We take the latter approach and parse
state changes over time, although action recognition is im-
plicit in our model.

Fine-grained inference in computer vision: As perfor-
mance on traditional classification tasks has begun to satu-
rate in both computer vision and action recognition, recent
years have seen a trend toward estimating more complex,
structured variables.

Even within these structured problems, the degree of pre-
cision varies. As an example from action recognition, [14]
models human-object interactions using a spatio-temporal
graph. These interactions are described at a relatively coarse
level (for example, “subject opening microwave”).

At a more abstract level, some recent work in computer
vision has focused on parsing semantic graphs from images
[11, 24]. Motivated by image retrieval applications, these
methods seek not only to identify and localize objects, but
also to estimate relationships shared between pairs of ob-
jects (for example, “man riding horse”).

At the finest-grained level are methods which estimate
physical image parses. The sequential scene parsing system
in [8] estimates a graph whose vertices represent objects
and whose edges represent support relationships between
objects. Similarly, [9] and [23] estimate structured, physical
representations from images, although these representations
are not posed as graphs.

Our application adds a level of detail beyond these tra-
ditional adjacency relationships: in addition to describing
which two objects are connected, we also describe precisely
how they are connected by specifying the exact 3D pose

(rotation and translation) between the two objects.

3. Representation of Assembly Processes

We first define data structures representing the salient en-
tities and actions, as well as a model which describes the
way entities are changed by actions.

3.1. State representation

We represent the state of a spatial assembly as a graph
whose vertices correspond to entities (i.e. its component
parts). If two entities are physically adjacent to each other,
the vertices representing them are joined by a directed edge.
We denote the graph’s vertex set as V , and its edge set as E .
Each edge e is associated with a label le ∈ SE(3), which
defines an object’s relative pose1 in the coordinate frame of
its neighbor. Figure 1 visually illustrates such a graph for a
DUPLO block building task, albeit with labels omitted from
the edges to simplify illustration.

During the course of assembly it is possible to combine
objects into multiple, disjoint sub-parts. In terms of our
graph representation, each sub-part corresponds to a sep-
arate connected component in the graph. We denote the set
of connected components as C.

3.2. Action representation

Over the course of an assembly process, an agent can
take a variety of actions to change the state of the assem-
bly. Each action must specify what entities in the state will
change, and how they will change. We use A to represent
the set of possible actions.

In this paper, A is restricted to one type of constructive
action, and one type of deconstructive action:

• connect takes a state, two objects, and a relative pose
as arguments. It returns a state graph with an edge
added between the two objects.

• disconnect takes a state and two (connected) objects
as arguments. It returns a state graph with an edge
removed between the two objects.

Figure 1 illustrates the effect of two consecutive connect
actions.

4. A Probabilistic Graphical Model

In this section we provide a probabilistic model of an
assembly process, from which we derive an algorithm for
estimating an assembly process from video.

1SE(3) refers to the special Euclidean group on R3, a rotation and
translation in three-dimensional space.

4.1. Model definition

We base our model on a time-series structure inspired by
a partially-observable Markov decision process (POMDP),
which originates in the optimal control literature [3]. How-
ever, unlike typical control problems, our task is not to take
a sequence of actions which optimizes some reward func-
tion, but rather to recognize the sequence of states resulting
from actions that are being taken by an agent.

4.1.1 Observation model

Our graph-based representation of an assembly is sufficient
to differentiate between assemblies with different struc-
tures, but not to render an image of the assembly process.
We must additionally specify the global pose pi ∈ SE(3)
of each sub-part (i.e. each connected component in the state
graph). For notational convenience, we collect these poses
into the variable p =

(
p1, . . . , p|C|

)
.

We model the joint probability of an image I , generated
by state s = (V, E) in pose p, as

P (It, pt, st) = P (It|pt, st)P (pt|st)P (st). (1)

If we have an appearance and a shape model for each ob-
ject, and the camera parameters are known, we can generate
a template T by rendering each sub-part using the poses in
p. Disconnected sub-parts may be rendered independently
if we ignore collisions and occlusions.

To account for the error incurred by rendering an ideal-
ized template, we model each pixel of the observed image as
an independent Gaussian random variable, with mean given
by the template pixel value and variance σ2 (which we treat
as a hyperparameter). Letting X represent the pixel coordi-
nates of It,

P (It|pt, st) =
∏
x∈X
N (It(x);T (x; pt), σ

2). (2)

To model the pose distribution of each sub-part, we as-
sume the orientation is uniformly distributed on the unit
sphere and the translation is uniformly distributed on a
bounded volume of R3 visible by the camera.

4.1.2 Process model

In an assembly process, the state st is constructed or de-
constructed through the actions of some agent. In the case
that we have partial information about the actions that were
taken (for example, the posterior distribution from a black-
box action recognition system), we can use it to construct
the state transition probabilities:

P (st|st−1) =
∑

at−1∈A
P (st|st−1, at−1)P (at−1|st−1) (3)

s1 s2 s3 s4

a1 a2 a3

p1 p2 p3 p4

I1 I2 I3 I4

Figure 2: Graphical model corresponding to equation (4)

However, it is common that such information is not avail-
able. In this case we can treat the assembly process as a
Markov chain and estimate the state transition distribution
directly.

Combining this with our observation model in section
4.1.1, we obtain a final expression for the joint probability
of all observed and inferred variables:

P (I1:T , p1:T , s1:T) =

T∏
t=1

P (It|pt, st)P (pt|st)P (st|st−1)

(4)

This is represented by the graphical model in Figure 2.

4.2. Inference

Given I1:T , we estimate the state sequence using a
Viterbi-style decoding algorithm on the graphical model in
Figure 2. That is, we solve the problem

p∗1:T , s
∗
1:T = argmax

p1:T ,s1:T

P (I1:T , p1:T , s1:T) (5)

using max-sum message passing [15]. The solution of this
problem can be explained as a hypothesize-and-test ap-
proach. For each image, we generate a set of hypothe-
ses about the assembly state. We evaluate each hypothe-
sis locally by rendering a template and registering it to the
observed image. Finally, we decode globally by choosing
the most probable sequence of hypotheses according to our
model.

4.2.1 Hypothesis generation

The time-series structure in our problem allows us to effi-
ciently select and decode hypotheses using the Viterbi algo-
rithm with beam search [10]. At each time step t, we prune

Figure 3: Video collection rig

any hypothesis with low probability—i.e., any state st with

max
pt

P (I1:t, p1:t, s1:t) < Gmax
pt,st

P (I1:t, p1:t, s1:t) (6)

where G is a fixed constant. We then construct the hypoth-
esis set for the next sample by running our model forward
one step in time and including any state with nonzero prior
probability. This adaptive pruning method allows the sys-
tem to ignore most states when it is certain about a sample,
but to consider more hypotheses when its uncertainty in-
creases.

Every assembly process begins with a special state in
which no objects are connected to each other. We call this
state the empty state because its edge set is empty, and ini-
tialize the hypothesis set with only this state.

4.2.2 Template registration

At each time step we evaluate state hypotheses locally us-
ing P (It, p∗t |st), the joint probability of the image and the
best assembly pose under the hypothesis. We compute this
best pose using template registration: once we have a hy-
pothesis for the block state, we render a template T in a
canonical pose pc for each sub-part in the assembly. Under
the assumption that all object motion is planar, we can op-
timize over the pose in the pixel coordinates of the image
rather than in the world coordinate frame.

Since the pose is uniformly distributed, the log probabil-
ity logP (It, pt|st) of the image in a particular pose is pro-
portional to the log likelihood logP (It|pt, st), which itself
is proportional to a simple sum-of-squared-errors (SSE) dis-
tance metric. Thus, the registration problem for each sub-

(a) IMU in 3D-printed
enclosure (b) Blocks fitted with IMU enclosures

Figure 4: IMU-embedded DUPLO blocks

Figure 5: Target models to be assembled from the blocks

part’s template is

R∗, τ∗ = argmin
R,τ

∑
x∈X
‖I(x)− T (Rx+ τ ; pc, s)‖2 , (7)

where (R, τ) is a rigid motion in the space of pixel coordi-
nates. This is a nonlinear least-squares optimization prob-
lem, which can be solved using standard methods. For im-
plementation details, see section 5.3.2.

5. Parsing Block Construction Processes
We apply the algorithm in Section 4.2 to the task of pars-

ing videos of DUPLO block building activity. These data
were recorded during behavioral experiments studying early
childhood development of spatial skills.

5.1. Dataset description

5.1.1 Controlled dataset

To evaluate our system under conditions which match
the core modeling assumptions, we collected a controlled
dataset.

We collected video and inertial measurement data from
30 experimental trials. We performed five examples of each
of the six models in Figure 5 ourselves, taking care to ensure
that there was an unobstructed view of each partial assem-
bly as it was being created.

We recorded RGBD video using a Primesense Carmine
camera mounted in an overhead position (see Figure 3),

Figure 6: Prior distribution of states in the child’s play
dataset. Horizontal axis shows the (sorted) state index, ver-
tical axis shows the state probability.

with 320x240 resolution and 30 Hz sampling rate. We
recorded inertial measurements from MbientLab Metawear
CPRO sensors. Each sensor was housed in a 3D-printed
enclosure which was then fitted into a DUPLO block (See
Figures 4a, 4b). We sampled linear acceleration and angular
velocity from each device at a rate of 50 Hz.

Each video in the dataset was annotated with the actions
that occurred, along with their start and end times. These
actions were parsed to construct a state sequence for each
video. In total, 46 unique states were encountered in this
dataset. For each state in a video, a video frame was marked
which captured an unobstructed view for each block state.
In what follows, we refer to these frames as keyframes.

5.1.2 Child’s play dataset

To evaluate the robustness of our system, we collected a
dataset from child behavioral experiments [7]. In each of
the 145 videos, a child participant attempted to copy one of
the six models shown in Figure 5. A university ethics review
board approved all study procedures, and participants and
their legal guardians provided informed assent and consent,
respectively.

The data collection and annotation setup was identi-
cal to the one for the controlled dataset. When marking
keyframes, if there was no clear view available for a state,
the least-occluded frame was selected. See [7] for more in-
formation about the data collection and annotation process.

As any parent can attest, children don’t always do things
the way you expect. This dataset contains many confound-
ing factors, such as significant and frequent occlusion of
the block model by children’s hands and arms. Further-
more, 311 unique states were encountered in this dataset
compared to 46 for the controlled dataset, 60.8% of these
states have only one observed example, and the empty state
accounts for 13.8% of all observations. This results in a
highly skewed prior on the state space (see Figure 6).

Figure 7: Image preprocessing pipeline

5.2. Image pre-processing

5.2.1 Background subtraction

We remove the background by fitting a plane to the depth
image and masking all pixels within a set distance from the
plane. We also mask the left-most portions of each image,
since this region almost never contains the block assembly
and frequently contains distracting objects.

5.2.2 Semantic segmentation

Semantic segmentation is necessary due to the presence of
hands and other confounding objects in the frame. We use a
simple method based on color-space segmentation and ma-
jority voting.

Pixel-level classification: To mitigate the effects of par-
tial occlusions, we need a classifier that predicts whether
pixels in the foreground of an image belong to blocks or
hands. We define c0 to be the class of blocks pixels, and
c1 to be the class of hands pixels. Since we do not have a
dataset annotated with these labels, we constructed a proxy
by combining the keyframes from section 5.1.1, which we
assume do not contain hands, and a set of images from the
child’s play dataset, which we assume all contain some por-
tion of a hand. We constructed the child’s play image set by
randomly selecting 30 videos, then randomly selecting one
frame for each state graph in the video.

For classification we chose a latent-variable mixture
model. The latent variable d indexes a set of M Gaussian
distributions with unit covariance, and is shared between
both pixel classes. The probability of an image under this
model is

P (I) =
∏
x∈X

1∑
i=0

M∑
j=1

P (ci)P (dj |ci)P (I(x)|dj). (8)

We estimate the means of Gaussian distributions dj by
training a minibatch k-means [18] model on the proxy
dataset described above. We estimate the conditional prob-
abilities P (dj |ci) by computing histograms of Gaussian
components for the clear-view and obstructed-view images,
and P (c0) = P (c1) = 0.5 by our construction of the train-
ing set.

Using this model, we classify each pixel by assigning it
to the nearest Gaussian component and assigning the Gaus-
sian component to its most probable image class.

To mitigate potential failures in the background model,
we also assign pixels to the background class if their satu-
ration or depth values are below set thresholds.

Segment-level classification: We segment frames into
superpixels using the implementation of SLIC [1] in scikit-
image [21]. Then, we assign segments larger than a set
threshold to the background to avoid detecting obviously
incorrect objects such as sleeves or arms. Finally we group
contiguous pixels assigned to the same class, giving a set of
segments which we use as object proposals.

5.3. Other implementation details

5.3.1 Parameter estimation and hyperparameters

We estimate the state-to-state transition probabilities of the
model in Figure 2 using the empirical distribution of the
training set. We set the appearance model of each block
to maximally-saturated colors: red, blue, yellow, or green.
For RGB data we set the the observation variance σ2 to 1,
and for depth we set it to 100. Finally, we chose M = 32
Gaussian components for the mixture model used during
semantic segmentation.

5.3.2 Inference

Template registration: We solve the optimization problem
given by (7) using the Trust Region Reflective algorithm [5]
implemented in SciPy [12]. We initialize t at the centroid of
each of the image segments classified as blocks in 5.2.2 and
sample 25 uniformly-spaced values on the unit circle for
R. We treat any pixels classified as hands as missing data,
leaving them out when computing the value of the SSE ob-
jective. In the case that a block assembly has more than one
connected component, we compute the best assignment of
components to image segments using the Hungarian algo-
rithm [17].

Decoding: To compensate for preprocessing errors and
occluded segments, we apply add-one smoothing [10] to the
HMM state transition probabilities when predicting on the
child’s play dataset. We add one extra count to each tran-
sition leading into the empty state, and one extra count to
each transition leading out of the empty state. We set the
Viterbi pruning coefficient G to zero when evaluating the
system in Sections 6.1.1 and 6.1.2, and investigate its effect
separately in Section 6.1.3. When doing combined RGBD
inference, we register RGB and depth templates separately
and send the sum of their resulting log probabilities as the
input to the Viterbi decoder. This is equivalent to assuming
that the modalities are independent.

6. Experimental Setup and Results
To test the system’s performance in a setting that

matches the modeling assumptions, we evaluate it on the
controlled dataset. We train using the full child dataset and
test on the full controlled dataset.

To test the system’s usefulness in a real-life setting, we
evaluate it on the child’s play dataset. In this dataset, state
sequences are annotated for every video, but keyframes are
only annotated for 72 videos. This means we can train the
HMM’s state transitions on all 145 videos, but our test set
is limited to the 72 videos with annotated keyframes. We
use leave-one-video-out cross validation and report average
metrics across folds.

6.1. Evaluation

We evaluate accuracy, precision, and recall at three lev-
els of granularity. At the block level, we ask whether the
system has correctly estimated which blocks have been in-
corporated into the model, i.e. correctly detected vertex
membership in each connected component. The edge level
measures whether the system has correctly estimated which
pairs of blocks are joined in the model, i.e. correctly iden-
tified each edge present. The state level is the most pre-
cise, measuring if the system has correctly estimated every
block, edge, and edge label (corresponding to relative block
poses).

6.1.1 Controlled dataset

Table 1 shows the results of our system on the controlled
dataset. State accuracy is above 90% when parsing RGB
data, with precision and recall nearly matching this perfor-
mance. These results show that our system works well when
the observed data match the expectations of our model. As
may be expected, performance is worse when parsing depth
data. Since half the blocks look identical to each other
when color is ignored, the system has no way of distin-
guishing between different states with the same adjacency
structure. However, results on combined data show that in-
cluding depth frames along with RGB does no worse than
RGB on its own.

6.1.2 Child’s play dataset

Table 2 shows the results of our system on the child’s play
dataset. From these results we see that although system per-
formance degrades at the finest-grain level of detail, the sys-
tem’s multiple hypotheses and implicit prior world model
enable robust estimates at a coarser level. More specifi-
cally, an edge precision better than 91% indicates that the
system usually predicts a state that is similar to a subset
of the ground-truth state. Again, system performance is
lower when parsing depth data. The system’s performance

modality state acc. state prec. state rec.

rgb 92.53 91.14 91.14
depth 59.58 51.36 51.36
combined 92.50 91.14 91.14

edge acc. edge prec. edge rec.

rgb 97.11 99.54 97.48
depth 78.55 85.02 84.22
combined 97.11 99.54 97.48

block acc. block prec. block rec.

rgb 98.00 99.62 98.33
depth 87.83 91.60 92.09
combined 98.00 99.62 98.33

Table 1: Results, controlled dataset (macro-averages)

modality state acc. state prec. state rec.

rgb 62.02 62.84 56.14
depth 32.92 21.42 20.49
combined 59.72 53.47 53.63

edge acc. edge prec. edge rec.

rgb 67.01 91.28 69.19
depth 41.27 50.18 52.80
combined 69.05 84.90 72.25

block acc. block prec. block rec.

rgb 71.44 93.20 73.47
depth 60.40 70.15 77.25
combined 76.05 90.84 79.36

Table 2: Results, child’s play dataset (macro-averages)

is worse using combined RGB and depth data than using
RGB data alone, likely because of lower confidence in the
RGB modality producing a less skewed interpolation be-
tween RGB and depth results.

6.1.3 Effect of Viterbi pruning

Although we did not prune any states during inference in
sections 6.1.2 and 6.1.1 to obtain the best possible system
performance, we investigate its effect here. Figure 8 shows
our system’s performance on the child’s play and controlled
datasets as the Viterbi pruning coefficient G is varied. In
both cases, it is possible to ignore large proportions of the
state space before significant performance degradation is in-
curred. Figure 8a shows that the system’s high confidence
on the clear evidence of the controlled dataset leads to sig-
nificant efficiency gains. Even at the most conservative
value for G, it visits fewer than 9% of the possible states
on average. This trend continues, though to lesser effect,
in the child’s play dataset results in figure 8b. The chal-
lenging nature of this dataset, in addition to the transition
smoothing we apply into and out of the empty state, lead
to much greater uncertainty during inference. However, the
state space can still be pruned by about 60% on average be-
fore performance degrades noticeably.

7. Conclusion

In this paper we have outlined a model for assembly pro-
cesses, derived a probabilistic inference algorithm, and ap-
plied it to parsing a block construction task. We evaluated
on two datasets: one in a controlled setting, and another

consisting of unconstrained data collected from child be-
havioral experiments. Results show that our system per-
forms almost perfectly when data conditions match the
modeling assumptions, and still gives sensible results un-
der much more challenging data conditions.

Results from these experiments suggest new research di-
rections, particularly in fine-grained action recognition and
in occlusion-robust computer vision. In this work the state
parser operates on its own, but this model can work along-
side an explicit action recognition system to enable more
efficient and more accurate inference.

The results in this paper rely on one manually identified
keyframe per state. When there is no single unoccluded
view available for a state, it may be possible to reconstruct
most of the model image by aggregating information across
multiple consecutive frames. Furthermore, removing the re-
liance on manual keyframe extraction is a natural next step
in developing truly autonomous systems.

Finally, the multiple modalities in our datasets offer a
unique chance to explore methods for RGBD + IMU data
fusion. For instance, IMU signals could be used as input
for the explicit action recognition system described above.
Alternatively, orientation estimates could be derived from
the IMU signals to improve template registration.

8. Acknowledgements

This work was supported by NSF award No. 1561278.
We also gratefully acknowledge our collaborators Cathryn
Cortesa, Barbara Landau, and Amy Shelton for their leading
role in the behavioral experiments underlying this paper.

(a) Controlled dataset (b) Child’s play dataset

Figure 8: System performance as a function of the Viterbi pruning coefficient. From top to bottom: state metrics, edge
metrics, and proportion of states visited.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk. Slic superpixels compared to state-of-the-art
superpixel methods. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 34(11):2274–2282, Nov 2012.

[2] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d
human pose estimation: New benchmark and state of the art
analysis. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2014.

[3] D. P. Bertsekas. Dynamic Programming and Optimal Con-
trol, Vol. II. Athena Scientific, 3rd edition, 2007.

[4] A. Bosselut, C. Ennis, O. Levy, A. Holtzman, D. Fox, and
Y. Choi. Simulating action dynamics with neural process
networks. In International Conference on Learning Repre-
sentations, 2018.

[5] M. Branch, T. Coleman, and Y. Li. A subspace, interior, and
conjugate gradient method for large-scale bound-constrained
minimization problems. SIAM Journal on Scientific Comput-
ing, 21(1):1–23, 1999.

[6] J. Carreira and A. Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
Jul 2017.

[7] C. S. Cortesa, J. D. Jones, G. D. Hager, S. Khudanpur, A. L.
Shelton, and B. Landau. Characterizing spatial construction
processes: Toward computational tools to understand cogni-
tion. In Annual Meeting of the Cognitive Science Society,
pages 246–251, 2017.

[8] G. D. Hager and B. Wegbreit. Scene parsing using a prior
world model. International Journal of Robotics Research,
30(12):1477–1507, 2011.

[9] E. Jahangiri, E. Yoruk, R. Vidal, L. Younes, and D. Geman.
Information Pursuit: A Bayesian Framework for Sequential
Scene Parsing. ArXiv e-prints, Jan. 2017.

[10] F. Jelinek. Statistical Methods for Speech Recognition. MIT
Press, Cambridge, MA, USA, 1997.

[11] J. Johnson, R. Krishna, M. Stark, L.-j. Li, D. A. Shamma,
M. S. Bernstein, and L. Fei-fei. Image Retrieval using Scene
Graphs. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3668–3678, 2015.

[12] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–. [Online; accessed Novem-
ber 20, 2018].

[13] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In CVPR, 2014.

[14] H. S. Koppula, R. Gupta, and A. Saxena. Learning human
activities and object affordances from rgb-d videos. Int. J.
Rob. Res., 32(8):951–970, July 2013.

[15] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Transactions
on Information Theory, 47(2):498–519, 2001.

[16] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.
HMDB: a large video database for human motion recog-
nition. In Proceedings of the International Conference on
Computer Vision (ICCV), 2011.

[17] J. Munkres. Algorithms for the assignment and transporta-
tion problems. Journal of the Society for Industrial & Ap-
plied Mathematics, 5(1), Mar 1957.

[18] D. Sculley. Web-scale k-means clustering. In Proceedings
of the 19th International Conference on World Wide Web,
WWW ’10, pages 1177–1178, New York, NY, USA, 2010.
ACM.

[19] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of
101 human actions classes from videos in the wild, 2012.

[20] S. Stein and S. J. McKenna. Combining embedded ac-
celerometers with computer vision for recognizing food
preparation activities. In Proceedings of the 2013 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous

Computing, UbiComp ’13, pages 729–738, New York, NY,
USA, 2013. ACM.

[21] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias,
F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu,
and the scikit-image contributors. scikit-image: image pro-
cessing in Python. PeerJ, 2:e453, 6 2014.

[22] N. N. Vo and A. F. Bobick. From stochastic grammar to
bayes network: Probabilistic parsing of complex activity.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2014.

[23] J. Wu, J. B. Tenenbaum, and P. Kohli. Neural scene de-
rendering. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2017.

[24] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. Scene graph gen-
eration by iterative message passing. In Proceedings - 30th
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2017, pages 3097–3106, 2017.

