

Toward Computer Vision Systems that Understand Real-World Assembly Processes

Jonathan D. Jones, Gregory D. Hager, Sanjeev Khudanpur

Computer vision in dynamic environments

Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." *European conference on computer vision*. Springer, Cham, 2014.

By Steve Jurvetson - Flickr: Tesla Autobots, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=248192.9

Computer vision in dynamic environments

- Environments not always static
 - Objects interact with each other
 - Can experience state changes
- Example: Assembly processes
 - Collaborative robots
 - Industrial monitoring

Billy bookcase instructions, IKEA

Application: Parsing Block-Building Videos

Collaborators

Barbara Landau Cognitive Science

Amy Shelton Education

Cathryn Cortesa Cognitive Science

Cortesa, C. S., Jones, J. D., Hager, G. D., Khudanpur, S., Landau, B., & Shelton, A. L. (2018) Constraints and Development in Children's Block Construction. CogSci 2018 Proceedings, 246-251.

Cortesa, C. S., Jones, J. D., Hager, G. D., Khudanpur, S., Shelton, A. L., & Landau, B. (2017). Characterizing spatial construction processes: Toward computational tools to understand cognition. CogSci 2017 Proceedings, 246-251.

- 1. Choose the right block
- 2. Make the right connections
- 3. Connect in the right way

- 1. Choose the right block
- 2. Make the right connection
- 3. Connect in the right way

- 1. Choose the right block
- 2. Make the right connection
- 3. Connect in the right way

- 1. Choose the right block
- 2. Make the right connection
- 3. Connect in the right way

connect (, , , ,
$$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
 , 0°)

- State is a graph
- Vertices are blocks
- Edges are block connections
- Edges are labeled with a block's relative pose in the coordinate frame of its neighbor

A probabilistic model

 s_t : state of block model

 p_t : pose of block model

 I_t : video keyframe

A probabilistic model

$$p_{1:N}^*, s_{1:N}^* = \underset{p_{1:N}, s_{1:N}}{\operatorname{argmax}} P(p_{1:N}, s_{1:N} \mid I_{1:N})$$

Parsing assembly processes

Inference: Hypothesize and test

- Generate hypotheses
- Test hypotheses locally (render & register template)
- Decode best state sequence globally 3.

Parsing assembly processes

Inference: Hypothesize and test

- Generate hypotheses
- Test hypotheses locally (render & register template)
- Decode best state sequence globally 3.

Parsing assembly processes

Inference: Hypothesize and test

- 1. Generate hypotheses
- 2. Test hypotheses locally (render & register template)
- 3. Decode best state sequence globally

Experiments: Data

Controlled dataset

"Child's play" dataset

Experiments: Data

"Child's play" dataset

assembly out of view

assembly occluded

Experiments: Results

Controlled dataset

Child's play dataset

Future work

- Multimodal inference
 - RGB-depth
 - acceleration, angular velocity
- Handling occlusion
- Modeling actions

Acknowledgements

Barbara Landau Cognitive Science

Amy Shelton Education

Greg Hager Computer Science

Sanjeev Khudanpur Electrical Engineering

Cathryn Cortesa Cognitive Science

Anand Malpani Computer Science

Jonathan Jones Electrical Engineering

