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Abstract. Dexterous surgical activity is of interest to many researchers
in human motion modeling. In this paper, we describe a dataset of sur-
gical activities and release it for public use. The dataset was captured
using the da Vinci Surgical System and consists of kinematic and video
from eight surgeons with different levels of skill performing five repe-
titions of three elementary surgical tasks on a bench-top model. The
tasks, which include suturing, knot-tying and needle-passing, are stan-
dard components of most surgical skills training curricula. In addition to
kinematic and video data captured from the da Vinci Surgical System,
we are also releasing manual annotations of surgical gestures (atomic
activity segments), surgical skill using global rating scores, a standard-
ized cross-validation experimental setup, and a C++/Matlab toolkits for
analyzing surgical gestures using hidden Markov models and using lin-
ear dynamical systems. We refer to the dataset as the JHU-ISI Gesture
and Skill Assessment Working Set (JIGSAWS) to indicate the collabo-
ration between Johns Hopkins University (JHU) and Intuitive Surgical
Inc. (ISI), Sunnyvale, CA, on collecting the data.

1 Introduction

Studying dexterous human motion is important for at least three reasons. First,
insights on how humans acquire dexterity in motion can be applied to facili-
tate skill acquisition. Second, skill may be objectively assessed using automated
technology. Third, dexterous human motion may be partially or completely auto-
mated. Partial automation involves human machine collaboration where humans
and robots perform separate parts of the task, for example [8].

Surgery involves dexterous human motion. The eventual goal for studying
surgical motion is to improve safety and effectiveness of surgical patient care.
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Poor surgical technical skill has been shown to be associated with higher post-
surgical patient complications including death [3]. Surgical technical errors were
the most common reason for post-surgical complications including re-operation
and re-admission [9]. Thus, improving how surgeons acquire technical skill can
positively impact safety and effectiveness of surgical patient care.

1.1 The Language of Surgery project

We believe that surgical motion is analogous to human language because it is a
composition of elementary activities that are sequentially performed with certain
constraints. Consequently, surgical motion can be modeled using techniques that
have successfully been applied for analyzing human language and speech. We
define the Language of Surgery as a systematic description of surgical activities
or proceedings in terms of constituents and rules of composition. Based upon [6],
the language of surgical motion involves describing specific actions that surgeons
perform with their instruments or hands to achieve an intended surgical goal.

We study surgical activity as an example of dexterous human motion within
the Language of Surgery project at the Johns Hopkins University. The overall
goals for the project are to establish archives of surgical motion datasets, proce-
dures and protocols to curate and securely store and share the datasets, develop
and evaluate models to analyze surgical motion data, develop applications that
use our models for teaching and assessing skillful motion to surgical trainees,
and conduct research towards human machine collaboration in surgery.

Surgical activity data may be considered to encompass several types of vari-
ables related to human activity during surgery such as surgical tool motion (kine-
matics), video, log of events happening within and beyond the surgical field, and
other variables such as surgeon’s posture, speech, or manual annotations.

The objective for this paper is to release and describe a dataset we compiled
within one of our studies on skilled human motion where surgeons performed
elementary tasks on a bench-top model in the laboratory using the da Vinci
Surgical System [5] (dVSS; Intuitive Surgical, Inc., Sunnyvale, CA). The surgi-
cal tasks included in this dataset are typically part of a surgical skills training
curriculum. We refer to the dataset being released as the “JHU-ISI Gesture and
Skill Assessment Working Set (JIGSAWS)” to indicate that this dataset was
collected through a collaborative project between the Johns Hopkins University
(JHU) and Intuitive Surgical Inc. (ISI).

1.2 The dVSS and its research interface

Within the Language of Surgery project, several studies have been conducted
where we captured surgical activity data using the Application Programming
Interface (API) of the dVSS. The dVSS is a tele-robotic surgical system that
provides surgeons with enhanced dexterity, precision and control. The dVSS has
been widely used to perform minimally invasive procedures in urology, gynecol-
ogy, general surgery, and cardiothoracic surgery [5]. The dVSS is comprised of a
master-side console with two master tool manipulators (MTMs) that are oper-
ated by the surgeon, a patient-side robot with three patient-side manipulators
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(PSMs) and a camera arm with a stereo endoscope. During surgery, the surgeon
tele-operates the PSMs by manipulating the MTMs.

The research interface (da Vinci API) [4] of the dVSS offers a convenient tool
for data capture in real-time via an ethernet API. Through a collaborative agree-
ment with Intuitive Surgical, Inc., we used the research interface of the dVSS
to collect motion data from the MTMs and PSMs, as well as the camera pose,
video data, and system events and converted them into an accessible format, as
detailed in the next section.

2 Dataset

2.1 Surgical tasks

The JIGSAWS includes data on three elementary surgical tasks performed by
study subjects (surgeons) on bench-top models. All three tasks (or their variants)
are typically part of surgical skills training curricula. The three tasks include:

– Suturing (SU): The subject picks up needle, proceeds to the incision (des-
ignated as a vertical line on the bench-top model), and passes the needle
through the “tissue”, entering at the dot marked on one side of the incision
and exiting at the corresponding dot marked on the other side of the incision.
After the first needle pass, the subject extracts the needle out of the tissue,
passes it to the right hand and repeats the needle pass three more times.

– Knot-Tying (KT): The subject picks up one end of a suture tied to a
flexible tube attached at its ends to the surface of the bench-top model, and
ties a single loop knot.

– Needle-Passing (NP): The subject picks up the needle (in some cases not
captured in the video) and passes it through four small metal hoops from
right to left. The hoops are attached at a small height above the surface of
the bench-top model.

The subjects were not allowed to move the camera or apply the clutch while
performing the tasks. Figure 1 shows snapshots of the three surgical tasks.

Fig. 1. Snapshots of the three surgical tasks in the JIGSAWS (from left to right):
suturing, knot-tying, needle-passing.

2.2 Subjects

The JIGSAWS includes data from eight subjects, indexed as {“B”, “C”, “D”,
“E”, “F”, “H”, “I”} with varying robotic surgical experience. Subjects D and E
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reported having more than 100 hours, subjects B, G, H, and I reported having
fewer than 10 hours, and subjects C and F reported between 10 and 100 hours
of robotic surgical experience. All subjects were reportedly right-handed.

2.3 Task repetitions

All subjects repeated each surgical task five times. We refer to each of the five
instances of a study task performed by a subject as a “trial”. Each trial is
on average about two minutes in duration for all three surgical tasks. We as-
signed each trial a unique identifier in the form of “Task UidRep”. For example,
“Knot Tying B001” in the dataset files indicates the first repetition of subject
”B” for the knot tying task. The JIGSAWS consists of 39 trials of SU, 36 trials
of KT, and 28 trials of NP. The data for the remaining trials (1 for SU, 12 for
NP, and 4 for KT) are unusable because of corrupted data recordings.

2.4 Data description

Kinematic data The JIGSAWS consists of three components: kinematic data,
video data, and manual annotations. We captured the kinematic data from the
dVSS using its API at 30 Hz. The left and right MTMs, and the first and
second PSMs (PSM1 and PSM2, also referred as the right and left PSMs in
this dataset), are included in the dataset. The motion of each manipulator was
described by a local frame attached at the far end of the manipulator using
19 kinematic variables, therefore there are 76 dimensional data to describe the
kinematics for all four manipulators listed above. The 19 kinematic variables for
each manipulator include Cartesian positions (3 variables, denoted by xyz), a
rotation matrix (9 variables, denoted by R), linear velocities (3 variables, denoted
by x′y′z′), angular velocities (3 variables, denoted by α′β′γ′, where αβγ are
Euler angles), and a gripper angle (denoted by θ). All kinematic variables are
represented within a common coordinate system. Table 1 describes the details
of the variables included in the kinematic dataset. The kinematic data for the
MTMs, PSMs, and the video data were synchronized with the same sampling
rate.

Table 1. Kinematic data variables.

Column indices Number of variables Description of variables

1-3 3 Left MTM tool tip position (xyz)

4-12 9 Left MTM tool tip rotation matrix (R)

13-15 3 Left MTM tool tip linear velocity (x′y′z′)

16-18 3 Left MTM tool tip rotational velocity (α′β′γ′)

19 1 Left MTM gripper angle velocity (θ)

20-38 19 Right MTM kinematics

39-41 3 PSM1 tool tip position (xyz)

42-50 9 PSM1 tool tip rotation matrix (R)

51-53 3 PSM1 tool tip linear velocity (x′y′z′)

54-56 3 PSM1 tool tip rotational velocity (α′β′γ′)

57 1 PSM1 gripper angle velocity (θ)

58-76 19 PSM2 kinematics
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Video data We captured stereo video from both endoscopic cameras of the
dVSS at 30 Hz and at a resolution of 640 x 480. The video and kinematic
data were synchronized such that each video frame corresponds to a kinematic
data frame captured at the same instant of time. The videos in the dataset
being released are saved as AVI files encoded in four character code (FOURCC)

Fig. 2. Screenshots of the corresponding left and right
images for a single frame in the suturing task.

format with the DX50
codec. The video files
named “capture1” and
“capture2” were recorded
from the left and right en-
doscopic cameras, respec-
tively. Figure 2 shows a
snapshot of correspond-
ing left and right images
for a single frame. The
dataset does not include
calibration parameters for the two endoscopic cameras.

2.5 Manual annotations

Surgical activity annotation A key feature of the JIGSAWS is the manually
annotated ground-truth for atomic surgical activity segments called “gestures”
or “surgemes” [6,11]. A surgical gesture is defined as an atomic unit of inten-
tional surgical activity resulting in a perceivable and meaningful outcome. We
specified a common vocabulary comprised of 15 elements as detailed in table 2,
to describe gestures for all three tasks in the dataset through consultation with
an experienced cardiac surgeon with an established robotic surgical practice.

Table 2. Gesture vocabulary

Gesture index Gesture description

G1 Reaching for needle with right hand

G2 Positioning needle

G3 Pushing needle through tissue

G4 Transferring needle from left to right

G5 Moving to center with needle in grip

G6 Pulling suture with left hand

G7 Pulling suture with right hand

G8 Orienting needle

G9 Using right hand to help tighten suture

G10 Loosening more suture

G11 Dropping suture at end and moving to end points

G12 Reaching for needle with left hand

G13 Making C loop around right hand

G14 Reaching for suture with right hand

G15 Pulling suture with both hands.
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One individual annotated the data for surgical gestures by watching the
videos in consultation with the surgeon. Each annotation includes the name
of the gesture, and the start and end frames in the video. The video frames
correspond to the frames in the kinematic data (one-to-one mapping) because
we synchronized them using a common global time. All frames for each trial have
been assigned a gesture label except a couple of frames at the end of a trial after
the task was finished. Because we used a common vocabulary of gestures for all
three surgical tasks, not all gestures in the vocabulary are used to annotate each
surgical task. Although some gestures may be observed in more than one task,
the background environment differs across tasks. For example, the “Pushing
needle through tissue (G3)” gesture may be observed both in SU and NP tasks.
But the needle is passed through an artificial tissue in SU and through a metal
hoop in NP.

Surgical skill annotation The JIGSAWS also includes manual annotation for
surgical technical skill. A gynecologic surgeon with extensive robotic and laparo-
scopic surgical experience watched each video and assigned a global rating score
(GRS) using a modified objective structured assessments of technical skills (OS-
ATS) approach [7]. The OSATS approach is a standard and structured method
to assess surgical technical skills. We modified the original OSATS approach to
exclude items that are not applicable to the surgical tasks we studied, for ex-
ample, use of assistants. The modified GRS provided as part of the JIGSAWS
is a sum of scores on six elements, each scored on a Likert scale of 1 through
5. The six elements are described in Table 3. The GRS represents a measure of
technical skill over the entire trial. The annotating surgeon was masked to the
identity of the subject who performed the surgical task.

3 Additional utilities

We are releasing two utilities along with the JIGSAWS for others interested in
studying surgical activity or skill with these data:

1. An experimental setup that can be used to evaluate automatic surgical
gesture recognition and skill assessment methods. The experimental setup
includes two cross-validation schemes to account for the structure of the
dataset:

– Leave-one-supertrial-out (LOSO): Supertrial i is defined as the set
consisting of the i-th trial from all subjects for a given surgical task. In
the LOSO setup for cross-validation, we created five folds with each fold
comprising of data from one of the five supertrials. The LOSO setup can
be used to evaluate the robustness of a method by leaving out the i-th
repetition for all subjects.

– Leave-one-user-out (LOUO): In the LOUO setup for cross-validation,
we created eight folds, each one consisting of data from one the eight
subjects. The LOUO setup can be used to evaluate the robustness of a
method when a subject is not previously seen in the training data.
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Table 3. Elements of modified global rating score

Element Rating scale

Respect for tissue
1-Frequently used unnecessary force on tissue;
3-Careful tissue handling but occasionally caused inad-
vertent damage;
5-Consistent appropriate tissue handling;

Suture/needle handling

1-Awkward and unsure with repeated entanglement and
poor knot tying;
3-Majority of knots placed correctly with appropriate
tension;
5-Excellent suture control

Time and motion
1-Made unnecessary moves;
3-Efficient time/motion but some unnecessary moves;
5-Clear economy of movement and maximum efficiency

Flow of operation
1-Frequently interrupted flow to discuss the next move;
3-Demonstrated some forward planning and reasonable
procedure progression;
5-Obviously planned course of operation with efficient
transitions between moves;

Overall performance
1-Very poor;
3-Competent;
5-Clearly Superior;

Quality of final product
1-Very poor;
3-Competent;
5-Clearly Superior;

2. A C++/Matlab toolkit that can be used to analyze the kinematic data or
video data. The toolkit contains three main tools:

– A grammar-constrained hidden Markov model (HMM) to analyze the
kinematic data: This tool implements an HMM framework with the
states modeled as Gaussian mixture models, as described in [17], where
each gesture can be modeled using one elementary HMM and a trial is
modeled as a composite HMM by concatenating the constituent gesture-
specific elementary HMMs. Grammatical constraints can be applied on
decoding to simplify the search.

– A sparse-representation based HMM to analyze the kinematic data: This
tool implements an HMM with the observations modeled as a sparse
linear combination of atoms from a dictionary, as described in [14]. In
contrast to the grammar-constrained HMM tool, here the gestures are
modeled as the states in an HMM, and each trial can be viewed as an
instance from an HMM.

– A multiple kernel learning framework with linear dynamical system (LDS)
and bag-of-features (BoF) to analyze the video data: This tool imple-
ments the three methods described in [2,18]: 1) using an LDS to model
a video clip corresponding to a surgical gesture, where the observations
are the video frames; 2) a BoF approach where a dictionary of visual
words is learned and each image is represented by a histogram over the
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dictionary; 3) a multiple kernel learning framework to optimally combine
the LDS and BoF approaches.

4 Logistics

4.1 Accessing the dataset

The JIGSAWS can be downloaded without a fee from the Language of Surgery
website: http://cirl.lcsr.jhu.edu/jigsaws. Access to the dataset requires
a free registration, including provision of a valid email address so that we can
inform investigators about any issues or corrections to the dataset.

4.2 Data organization

The JIGSAWS is available for download as zip files. Users are free to choose
among tasks and data types, including kinematics or videos, together with tran-
scriptions for surgical gestures annotations and a meta file of self-proclaimed
skill and overall OSATS score for each tasks. In addition, users can optionally
download the experimental setup with standardized cross-validation folds we
used in our analyses, and a C++/Matlab toolkit using this experimental setup
for surgical gesture modeling. Partitioned downloads are enabled.

5 Prior work with the JIGSAWS

The JIGSAWS has been used for several research studies with two major areas
of focus - surgical activity recognition and skill assessment. Techniques related
to speech recognition, control theory, and computer vision have been developed
and applied in the research studies using this dataset. We worked with various
features extracted from the dataset, for example, features composed of a subset
raw kinematics or converted kinematics, features extracted from videos, or fea-
tures combining information from both kinematics and video, to classify (assign
class label with known segment boundaries), or recognize (assign class label with
unknown segment boundaries) surgical activities, and to evaluate dexterous skill.
Below, we briefly summarize the prior work with the JIGSAWS.

In an early study, [12] performed gesture classification using a 3-state elemen-
tary HMM to model each gesture in a trial after applying linear discriminant
analysis (LDA) to the continuous kinematic data for dimensionality reduction.
Later on, [11] applied an HMM on discrete spectrum features extracted from
a short time Fourier transform of the velocity features in the kinematic data
with the goal of evaluating surgical skill in tasks and sub-tasks. In [10] studied
the relation between subtasks and skill using the same features. [17] accom-
plished a surgical recognition task (jointly identifying gesture boundaries and
assigning gesture labels) by applying an HMM to features derived from model-
ing the kinematic data (after an optional LDA) using Gaussian mixture models
(GMMs). The topology for HMMs in [17] was entirely data-derived. These meth-
ods were enhanced in [16] through the development of various statistical models

http://cirl.lcsr.jhu.edu/jigsaws
http://cirl.lcsr.jhu.edu/jigsaws
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and machine learning algorithms including factor-analyzed HMMs, switching
linear dynamical systems (S-LDS) in supervised, semi-supervised, and unsuper-
vised contexts. Other research conducted using kinematic data includes applying
Gaussian mixture regression to reproduce expert motion trajectories as described
in [13]. [14] combined sparse dictionary learning with HMMs to recognize sur-
gical gestures and assess skill. Using only three-dimensional Cartesian positions
of the PSM tool-tips, [1] discretized a Frenet frame representation of the data
to descriptively encode tool motion trajectories and applied a string motif-based
method to classify surgical gestures.

Computer vision techniques have also been applied to model surgical activity
using the dataset. [6] describes methods to detect surgical gestures. [2] describe
applications of three different video-based approaches to classify surgical ges-
tures: LDS for modeling video clips corresponding to gestures, BoF approach on
spatio-temporal features extracted from videos, and multiple kernel learning to
combine the LDS and BoF approaches. [18] extended previous research to exploit
both kinematic and video data to classify surgical gestures. Finally, [15] applied
Markov-semi-Markov conditional random fields to features extracted from both
kinematic and video data for surgical gesture recognition.

6 Conclusion

We have described details for a dataset named JIGSAWS on dexterous surgical
motion performed using the da Vinci Surgical System in a training laboratory. In
addition to the data directly captured from the surgical robot, we also included
manual annotations for surgical gestures and skill. Our dataset will be of interest
to investigators studying dexterous human motion.
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