Introduction To Computer Vision

Introduction

  • What is computer vision and what is it not
  • Several application examples
  • Some of the challenges of computer vision
    • Engineering challenges
    • AI-ish challenges

Background on image formation

  • camera imaging basics
  • image representations
    • image formats
    • color spaces
  • Light Transport

Image Processing for Computer Vision

  • convolution
    • smoothing
    • derivatives
    • texture
    • edge detection
  • nonlinear filters
    • median filtering
    • morphology
    • top-hat/bottom-hat

Features and Feature Matching

  • Edge detection
    • Types of edges
    • Scale space
    • Canny edge detection
  • Texture features
    • Template matching
    • Corner detectors
    • Sift features
  • An example: object detection

Segmentation

  • Local classification (ad-hoc hacks ..)
    • thresholding
    • edges
  • “Local” (could be energy-based) optimization methods
    • k-means (Eric)
    • watershed book section (Dan M.)
    • snakes?
    • level sets**
    • agglomerative methods/region growing
      • Felzenszwalb example
    • mean-shift
  • Global (should be energy-based) methods

Imaging geometry and Calibration

Computational Stereo

  • computational stereo
  • generalizations to more cameras
    • space carving ideas
    • plane sweep
    • energy-based
  • Projects
    • mosaicking
    • 3D reconstruction

Motion Analysis

  • Background generation/subtraction
  • optical flow vs. motion field
  • image constancy equation
  • optical flow algorithms
  • template tracking
  • tomasi-kanade and extensions
  • Other tracking methods
    • mean shift
  • Projects
    • SLAM

Other Topics

Learning and Vision

  • generative
  • discriminative
  • Applications (2 lectures)
    • Object recognition
    • medicine

Appendices

  • Linear Algebra
    • SVD and linear system solution
  • Probability and Statistics
  • Spatial Transformations
  • Optimization
  • Experimental Design

Comments are closed.